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ABSTRACT

Epigraph is an efficient graph-based algorithm for designing vaccine antigens to optimize potential T-cell epitope (PTE) coverage.
Epigraph vaccine antigens are functionally similar to Mosaic vaccines, which have demonstrated effectiveness in preliminary
HIV non-human primate studies. In contrast to the Mosaic algorithm, Epigraph is substantially faster, and in restricted cases,
provides a mathematically optimal solution. Epigraph furthermore has new features that enable enhanced vaccine design
flexibility. These features include the ability to exclude rare epitopes from a design, to optimize population coverage based on
inexact epitope matches, and to apply the code to both aligned and unaligned input sequences. Epigraph was developed to
provide practical design solutions for two outstanding vaccine problems. The first of these is a personalized approach to a
therapeutic T-cell HIV vaccine that would provide antigens with an excellent match to an individual’s infecting strain, intended
to contain or clear a chronic infection. The second is a pan-filovirus vaccine, with the potential to protect against all known
viruses in the Filoviradae family, including ebolaviruses. A web-based interface to run the Epigraph tool suite is available
(http://www.hiv.lanl.gov/content/sequence/EPIGRAPH/epigraph.html).

Introduction
HIV is highly variable, largely as a consequence of immune selection acting on this highly mutable virus during chronic
infection1–4; even the most conserved regions of HIV are variable at the epitope level5, 6. T-cell epitopes are short contiguous
stretches of protein, peptides generally between 9-12 amino acids long, which are presented on the surface of infected cells to
enable recognition, and to trigger a T-cell based immune-response. Epitope variability limits the cross-reactive potential of
single antigen vaccines, such as a natural protein or a consensus sequence7, 8. Mosaic vaccines were originally designed to
contend with HIV diversity by including a small set of (typically two to four) complementary antigens, rather than a single
antigen. They include several artificial proteins that resemble natural proteins, but are collectively designed to maximally cover
diverse epitopes in a targeted population9, offering highly improved epitope coverage over combinations of natural sequences.

Mosaics and Epigraphs solve essentially the same optimization problem (PTE coverage), and are thus expected to behave
the same way experimentally. Mosaic antigens have already been designed, synthesized, and tested, and have shown promise
on a variety of fronts. When expressed, Mosaic antigens have folded well in terms of binding discontinuous antibodies, and are
highly immunogenic, eliciting both T-cell and antibody responses8, 10, 11. T-cell responses induced by Mosaics effectively target
HIV infected cells12, and are more cross-reactive than those induced by natural proteins8, 10, 13–15. Mosaic vaccines have shown
promise against HIV-18, 10, 11, 13, 16, as well as other variable pathogens, including the viruses that cause Hepatitis C17, Ebola18,
and Influenza19.

Despite the similarities in the overall optimization criteria, Epigraphs provide substantial advantages over our original
Mosaic strategy. Mosaics use a genetic algorithm9, while Epigraphs use a much faster graph-based approach (see Formulation).
This speed, as well as the structure of the mathematical framework, facilitated the addition of new features to the Epigraph tool
suite20. More importantly, while Mosaics provided a near optimal solution for antigen design to maximize PTE coverage by a
vaccine across a simple population, the code was not readily adapted to more complex problems. We developed Epigraph to
enable computational solutions to two pressing T cell vaccine design problems that were intractable using the computationally
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slower Mosaic algorithm: a pan-filovirus T-cell vaccine and a strategy for matching vaccines to infecting strains in a therapeutic
setting.

Recently there has been resurgence of interest in T cell-based vaccines. SIV vaccine antigens presented in rhesus macaque
cytomegalovirus (RhCMV) vectors generate prolific T-cell responses that enable stringent control and progressive clearance
of pathogenic SIV upon infection in over 50% of vaccinated monkeys. These responses violate traditional paradigms of T
cell-mediated immunity, and provide new impetus for exploring T-cell vaccine approaches21, 22. There is also keen interest
in focusing vaccine-stimulated T-cell responses on conserved regions, to shift immunodominance to epitopes with a limited
capacity to escape because they are under fitness constraints16, 23–25. Such T-cell vaccination strategies may be beneficial in
either a preventive or therapeutic setting. It was to pursue these innovative vaccine strategies that we developed Epigraph,
a flexible and computationally efficient strategy for optimizing epitope coverage in a variety of scenarios. The coupling of
Epigraph antigen design with contemporary vaccine delivery approaches offers a promising strategy with the potential to
advance vaccine efforts against the challenge of highly variable pathogens.

Here we applied Epigraph to provide potential solutions to two outstanding vaccine design problems. First, we describe
a Tailored Therapeutic Vaccine (TTV) approach. In contrast to a vaccine that prevents infection, in therapeutic setting it is
possible to obtain sequences from the infected person who will be treated, and attempt to match their infecting strain as closely
as possible to the vaccine. It is not currently feasible to make a new matched vaccine for every person you treat. The TTV
approach enables the design of a small set (a half a dozen or so) vaccine antigens, a practical number for manufacture. Then,
for each individual, the best two or three antigen subset of these six can be selected to provide a “tailored” match to viral
sequences sampled from the patient to be treated. The Epigraph-based TTV code optimizes the set of vaccine antigens for
manufacture, such that the set will sample the diversity of the target population, and enable the best vaccine matches overall for
infected individuals in the target population. Here we apply TTV approach to HIV, though the strategy is general. A single TTV
design run can loop over more than a thousand basic Epigraph runs, so the computational efficiency is essential to complete the
Epigraph design.

We next explored the problem of how to design a vaccine that could cover the viral diversity found in the entire Filoviradae
family, which includes ebolavirus and marburgvirus viruses, as well as other related viruses that can cause fatal hemorrhagic
fevers in human and non-human primates. First we used Epigraph to define the most conserved regions of the filovirus proteome,
then we used it to design antigens that would best cover the diversity that was found in those regions. We explored dozens
of design strategies to finally identify a vaccine solution that met three criteria. First, we felt it was critical that the potential
T-cell epitope coverage of the ebola virus species, that has historically seeded most outbreaks, not be compromised. Second,
we wanted the design to have the potential to elicit responses against of the full range of known diversity of viruses in the
Filoviradae family. Third, we made sure that the conserved regions that were included spanned relatively large stretches of
protein, so that epitopes representing a broad spectrum of human leukocyte antigens (HLAs) would be included. Exploring the
combinatorics of the many design options we considered to meet these criteria would have been prohibitive using the slower
Mosaic code, but through systematic use of Epigraph, we were able to identify a promising design strategy that met all three
criteria.

Epigraph Formulation
Central to both Epigraphs and Mosaics is the concept of potential epitope coverage. Because known T-cell epitopes are very
densely packed in HIV5, we consider every contiguous epitope-length fragment (i.e., every k-mer) to be a potential epitope. We
usually set k = 9 as the length of potential T-cell epitopes (PTEs), as this is the optimal length of most cytotoxic T-cell Class I
presented epitopes5, 9, but solutions optimized on k = 9 are still very good for other common epitope lengths of 8-12 amino
acids (Supplementary Table 1). If using a PTE length of 9, the first PTE in a sequence will be the peptide from position 1 to 9
in the protein, the second PTE from 2 to 10, etc.

Here we will briefly describe the steps taken in the Epigraph algorithm, to impart an intuition for what the algorithm is
doing; a more detailed and precise mathematical description is provided in the Methods. Fig. 1 provides an illustration of the
Epigraph strategy.

The first step in Epigraph design is to assemble a representative sample of N protein sequences that embodies the viral
diversity in a population that will be targeted for vaccine use (e.g., a phylogenetic clade, a country, or the world). The input
proteins do not have to be aligned, but they can be, as will be discussed below. Each sequence in the set is decomposed into
all possible 9-mers, and the number, n, of recurrences of a particular 9-mer in the sample population is tallied. Each unique
9-mer found at least once in the sample population will be associated with its frequency in the population. For instance, if there
are 1000 sequences in the sample population (N = 1000), and a particular 9-mer was found exactly matched in 200 of those
sequences (n = 200), then the frequency of that 9-mer is n/N = 0.2. We characterize the potential cross-reactivity of an antigen
by the sum of the frequencies of all the 9-mers in the antigen sequence; if we divide this quantity by the sum of frequencies of
all the distinct 9-mers in the population, that provides the coverage score.

2/20



Next, as illustrated in Fig. 1, a graph is created. Formally, a graph is a collection of nodes and edges (edges connect pairs
of nodes). In our graph, each node corresponds to a unique 9-mer, and two nodes are connected by an edge whenever the
9-mers in those two nodes share an overlap of 8 amino acids. A path through this graph is a sequential assembly of connected
nodes, with the last 8 amino acids of each node matching the first 8 amino acids of the subsequent node. These overlaps allow
such a path to be associated with a single sequence of amino acids. Epigraph (implicitly) considers all the paths – there are
exponentially many of them – in the graph and identifies an optimal path. The criterion for optimality is the coverage score,
which is proportional to the sum of frequencies associated with the nodes in the path. And from these nodes, we can construct
an intact full-length protein sequence. This sequence is the first antigen in our vaccine, and it will contain the most common
9-mers in the target population, to the extent possible given the constraint that those 9-mers have to overlap so that they can be
expressed with a single complete protein sequence. For a monovalent vaccine, this antigen is all we need. But once the first
antigen has been generated, we can produce a second complementary sequence by finding a second path through the graph that
again optimizes the sum of frequencies, but this time without including the frequencies of 9-mers that were already included
in the first antigen. This second step is achieved by setting the frequencies of those initial 9-mers to zero during this second
optimization. In this way, if a particular 9-mer is an essential block for building a complete protein, it can be incorporated into
both antigens, but as it does not increase the coverage score, it will not be favored. This process is repeated until the desired
number of antigens is generated for a polyvalent vaccine.

Comparison of Epigraph with Mosaics
The Mosaic approach optimizes coverage with a genetic algorithm in a loop that alternately recombines regions of natural
proteins at random breakpoints and creates pools of these in silico generated recombinants, and then selects those candidates
with the best coverage for the next generation from among those pools9. In contrast, the Epigraph algorithm optimizes that
criterion by finding a path through the k-mer overlap graph (Fig. 1). Epigraph solutions generally have a slightly improved
PTE population coverage relative to Mosaics when applied to HIV proteins (Supplementary Tables 2 and 3). While this
coverage advantage is small, the computational advantage in terms of run-time is substantial. Epigraph can complete a basic
vaccine design in seconds on a laptop (Supplementary Table 8), while Mosaic designs can take hours to days to approach
optimization26. When Mosaic antigens are used to initialize an Epigraph run, coverage scores can often be increased, albeit
very slightly (Supplementary Table 4). Thus high quality (and in certain cases, mathematically optimal) antigens can be very
rapidly determined with Epigraph, and this leads to new opportunities for innovative vaccine design that would otherwise be
computationally onerous to pursue.

Two caveats are in order here. One is that an Epigraph solution is mathematically optimal only if the directed graph is
acyclic – that is to say, the graph generated in Fig. 1 contains no cycles. One simple example of how a cycle can arise in a
graph is when a 9-mer is precisely repeated in two different places in a protein. In practice, most graphs we have used are
not acyclic, and that usually means we need to do some pre-processing (see Methods: De-cycling). A second caveat is that
optimality only applies to the single antigen (monovalent) case. For polyvalent vaccines, we employ heuristics to bootstrap the
monovalent optimality (see Methods: Polyvalent vaccines).

Excluding Rare Epitopes
Natural but rare PTEs are undesirable in a vaccine because they can elicit type-specific responses. Natural HIV proteins carry
a surprising number of such PTEs, and when these rare forms are immunogenic or immunodominant, they may curtail the
cross-reactive potential of a vaccine. One of the analysis tools in the Epigraph tool suite20 provides the frequencies of every
distinct PTE in a population, and the output provides a sobering lens with which to view natural HIV diversity. For example,
the Los Alamos HIV database M group Env alignment27 of 4,250 sequences contains over 650,000 distinct 9-mer peptides;
of these, over 500,000 are unique, each appearing only once in the population. This is an average of 120 unique PTEs per
natural Env sequence, and responses to such PTEs would likely be strain-specific. Even among Gag sequences, one of the most
conserved HIV proteins, there are just under 129,000 distinct naturally found 9-mers found in 4,596 M group sequences, over
60% of which appear only once, an average 18 completely unique 9-mers per natural sequence.

While Epigraphs generally disfavor rare epitopes, we can constrain solutions to strictly avoid them. The Epigraph tool
suite20 directly enables users to investigate the relationship between PTE coverage and rare epitope exclusion. To illustrate
this, Epigraph solutions based on global HIV database protein alignments were obtained for HIV proteins Env, Gag, Pol and
Nef (Fig. 2). Because Env includes hypervariable regions, inclusion of some rare epitopes is required for Epigraph antigens to
create a complete protein: its largest cutoff is no = 2, so for a complete Env to be generated, some PTEs must be included that
are only found three times in the full database. By contrast, Gag, Nef, and Pol antigens can readily be constructed for no > 100
(that is, the rarest epitope in the vaccine appears in over 100 target population sequences). As Fig. 2 illustrates, this can be
accomplished with minimal PTE coverage loss, and thus merits consideration in future vaccine designs. In practice, the vaccine
designer can create this graph of coverage versus no and based on this trade-off, select a threshold no to use for a final Epigraph
run.
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For practical use, particularly with a large number of input sequences in the target population, we recommend using a
cutoff of at least no = 1, so that each PTE included in the Epigraph sequences appears more than just once in the sample target
population. But users are encouraged to use a larger cutoff, as long as there is negligible cost in terms of coverage. Excluding
rare variants also speeds up the computation time (Supplemental Table 8). We remark that for sample target populations with
only a few target sequences – such as the Ebola set with only 32 distinct protein sequences – we required that epitopes only be
present once in the set to be considered for inclusion in the Epigraph antigens, to improve coverage of all variants.

Aligned and unaligned input sequences
The default variant of the Epigraph algorithm does not require that the input sequences in the sample target population be
aligned. The k-mer overlap graph depends only on the PTEs that are in the sequences, not on their positions in those sequences.

A variant of Epigraph was developed, however, that uses aligned target population sequences for input, and produces
antigens on output that are aligned with these input sequences. The extra structure that is imposed on the aligned solution often,
though not always, leads to slightly lower PTE coverage scores (see Supplementary Table 9). But an important consequence of
this structure is that the aligned variant produces a graph that is, by construction, acyclic; this eliminates the need for a heuristic
de-cycling step.

Optimizing on inexact matches
A further advantage of the extra structure imposed by alignment is that it permits other variants of the antigen design algorithms
that would be impractical with the open unaligned graph. One such extension is the optimization of coverage by inexact
matches. The motivation here is that an antigen epitope may still be cross-reactive with a target epitope, even though they don’t
exactly match. Instead of maximizing a coverage that gives credit to an antigen PTE only if it exactly matches a corresponding
PTE in the sample target population, we modify our criterion to give credit for approximately matching PTEs in the target
population. For example, if the antigen includes the 9-mer VTSSNMNNA, then it gets credit not only for every appearance
of VTSSNMNNA in the target population, but also for appearances of VTSSNMNNC, VTSSNMNDA, etc., which agree with the
antigen 9-mer VTSSNMNNA in 8/9 of the positions. As we describe in the Supplement, we can optimize on inexact coverage
and still give “bonus” credit to exact matches. We employ inexact-match coverage in our design of an Ebola vaccine, described
below.

RESULTS
Tailored Therapeutic Vaccines
A tailored therapeutic vaccine (TTV) is intended for a treatment situation in which the patient is already infected (hence,
therapeutic instead of preventative), and a sample of a patient’s infecting viral quasispecies sequence is available (allowing
the vaccine to be tailored to the patient’s specific infection). Given current technology and costs, it is not feasible to create
a de novo vectored vaccine for every subject. It is feasible, however, to sequence a sample of each patient’s virus. Thus the
more modest goal addressed here is to manufacture an affordable pool of m distinct vaccine antigens, from which only a subset
(n < m) is delivered to each patient, with the subset chosen to maximize PTE coverage of the patient’s viral sequences by the
selected Epigraphs

Given the pool of m sequences, it is straightforward to select the best subset of n for each patient. Since n and m are small,
one can quickly consider all possible subsets, and choose the one with maximum coverage of that patient’s sequences. The
challenge is to construct the pool of m artificial antigens so that these n-out-of-m subsets are optimally effective.

A plausible but suboptimal approach is to create an m-valent Epigraph vaccine to optimize global coverage. A problem
with this approach, especially for sequentially derived antigens, is that with each additional sequence, increasingly rare k-mers
are included in later sequences, so the first n Epigraphs are typically the best choice for most individuals, offering no increase
in coverage using a tailored approach over a simple Epigraph n-valent approach.

We explored several alternative strategies to achieve better coverage of sequences from the population of interest. The
best of these, which is detailed in Algorithm 4, employs a clustering strategy. We start with a single antigen sequence qo
that Epigraph produces by optimizing coverage over the whole sample population set. This will be used as the first sequence
in the manufactured set. We then partition the sample population sequences into m−1 clusters, with the grouping based on
PTE similarity scores (excluding the PTEs that were found in the initial sequence qo). Epigraph is separately applied to each
cluster to obtain a centroid sequence for that cluster; i.e., qi is obtained by maximizing the coverage over the sequences in i’th
cluster provided by the PTEs in the antigen set {qo,qi}. The process is iterative: the population sequence set is re-clustered by
re-assigning each sequence to the qi that maximally covers the PTEs in that sequence, and the new assignments lead to updated
qi’s, and so on until convergence. Finally, {qo,q1, . . . ,qm−1} is the set of m antigens that are manufactured.

The outcome can be sensitive to the initial conditions (clustering begins with initial random centroids), so we perform 100
complete runs using different starting sequences, and retain the best one as our solution. Given the number of iteration cycles in
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a single run, and the number of repeat runs with different initial conditions, the computational speed of the Epigraph algorithm
is critical.

We applied TTV to three potential HIV target sequence populations for treatment studies: 189 contemporary B-clade
sequences sampled in the United States, 199 contemporary C clade sequences sampled in Southern Africa, and 2015 Los
Alamos HIV database 4596 global M-group Gag sequences (Supplementary Table 5). Gag was used for this pilot study because
it is richly populated with beneficial epitopes in natural HIV infection28, and because SIV Gag responses are well-characterized
in the context of RhCMV vector delivery21, 22, and so it is a natural choice for inclusion in a CMV Tailored HIV vaccine. We
evaluated p24 separately, because it is the most conserved region within Gag5.

Fig. 3 illustrates PTE coverage of contemporary B clade US Gag and p24 sequences by bivalent vaccines. B clade Epigraphs
are markedly better than any combination of 2 natural B clade strains, while the best coverage was achieved by 2 TTV antigens
selected from a pool of 6 (Fig. 3).

Extra epitopes in a vaccine that are not matched in the individual’s infection may trigger irrelevant responses, potentially
diminishing vaccine-induced beneficial responses16. So we also monitored the extra PTEs in the TTVs. For given n, increasing
the size of the manufactured pool from m = 2 to m = 6 increases coverage (by over ten percent for the M-group) without
increasing the number of extra PTEs. Compared to the full-length Gag, the conserved-region p24 achieves improved coverage
and dramatically reduced extras. (Fig. 3; also see Supplementary Table 5.) However, Gag is ∼500 amino acids in length, while
p24 has only ∼230 amino acids, so the increased coverage of p24 comes at the cost of encompassing fewer PTEs. Increasing
the number vaccine antigens increases the epitope coverage with diminishing returns, and at the cost of including many more
mismatched epitopes. For example, in Gag, increasing the number of tailored antigens from 1 to 2 to 3 increases PTE coverage
from 61% to 75% to 79%, but also increases the average number of extra epitopes (in the vaccine but not in the target protein)
from 196 to 537 to 773 (Supplementary Table 5).

Filovirus/Ebola
Here we propose an Epigraph solution to a conserved-region pan-filovirus vaccine. The Epigraph tool was used for two
purposes: first to define conserved regions within the proteome, and then to design the best combination of antigens within
those regions for maximizing PTE coverage. A T-cell based Epigraph design may be particularly useful for viruses in the
family Filoviridae, because vaccine-elicited T-cell responses to ebolaviruses are protective in non-human primates (NHPs)29, 30,
and filoviruses are highly diverse31–33. We assembled, annotated and aligned all available filovirus proteomes as we worked the
vaccine project, and made the alignments available as part of our new HFV database31–33.

Viruses in the Filoviridae family have caused nearly 50 outbreaks in humans since their discovery in 1967, the most recent
of which was the devastating 2014 West African epidemic34, 35. There are five distinct species in the Ebolavirus genus virus:
Ebola virus (EBOV), Sudan virus (SUDV), Reston virus (RESTV), Taı̈ Forest virus (TAFV), and Bundibugyo virus (BDBV)36.
There are two types of virus in the Marburgvirus genus: Marburg virus (MARV) and Ravn virus (RAVV)37. Lloviu virus
(LLOV) is the only known species of the third genus Cuevavirus, discovered in bats in the Iberian Peninsula36.

Most vaccine efforts (reasonably) focus on EBOV, SUDV, and MARV, as these viruses are historically the most frequent
causes of these outbreaks30, 38. There is a high degree of conservation within a species (Fig. 4B), so, for example, a response to
any EBOV vaccine would likely be cross-reactive with other EBOV outbreaks. Future outbreaks, however, may result from the
re-emergence of a virus from a rare species, or a virus from a new species not yet encountered. There is historical precedent
for this: Bundibugyo virus was first identified in a 2007 outbreak and re-emerged in 2012, and Taı̈ Forest virus infected an
individual studying a chimpanzee outbreak in 1994. Reston virus has recurrently emerged in primate facilities, is lethal in
monkeys, infects pigs, and sometimes causes exposed people to develop antibodies, although to date all people who developed
antibodies have been asymptomatic34. Thus it may be prudent to develop a vaccine that is potentially effective across all 8
distinctive Filoviridae species/variants39, in parallel with the currently prioritized development of effective vaccines against
common outbreak species40.

We first used PTE coverage by full proteome Epigraphs as a means to define the four most conserved regions across all
members of the Filoviridae family. This was based on a comprehensive set of full genome sequences32. To identify conserved
regions, we created an aligned two-antigen Epigraph vaccine solution for the full filovirus proteome, and used local PTE
coverage provided by the Epigraph solution as our measure of conservation. We used an 8/9 matched minimum coverage of
80% as the criterion to define conserved regions. We required a minimum contiguous stretch of at least 100 amino acids for
inclusion as a conserved region, tolerating short dips in coverage due to diverse PTEs caused by isolated variable positions.
Based these criteria, we identified the four most conserved regions in the proteome (Fig. 4A, Supplementary Table 6). The
conserved regions collectively span 825 amino acids, which is a reasonable insert size for many vectors.

Having identified conserved regions, our next step was to design the vaccine. Because a future outbreak is most likely to be
the result of a virus from one of the common species, we did not want to compromise the cross-reactive potential for those
viruses. But, as discussed above, it is also possible that a future outbreak may more closely resemble rare-in-human, or even
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as-yet-undiscovered, members of the Filoviridae family. More specifically, our criteria are to:
i) preserve PTE coverage of EBOV, the most common species in human outbreaks

ii) maintain excellent PTE coverage of SUDV and MARV, which also have caused recurrent outbreaks; and
iii) given the constraints imposed by the first two criteria, provide extensive PTE coverage of all other Filovirus species.

There are many possible paths to achieve good Filoviridae PTE coverage, and we systematically explored the outcomes of
different design strategies, including optimization of Epigraph vaccine antigens using the 34 outbreak sequences simultaneously,
as well as combinations that used serial optimization, either starting with a natural sequence, or starting with an Epigraph
solution based on the 5 representative sequences selected from members of the Ebolavirus genus, or on a set of 8 representative
sequences that sampled filovirus diversity. We compared PTE coverage based on full proteins that have been commonly used
in vaccines, to the coverage based on conserved regions. We also explored the impact of optimization on imperfect matches,
and exclusion of rare epitopes. A priori, we didn’t know which of these strategies would provide the best solutions, and in
these series of comparisons, dozens of Epigraphs runs were conducted and compared; the speed of the Epigraph code enabled a
thorough and systematic exploration of design options. In Supplementary Table 7, we show we show coverage results for the
subset solutions that we considered of greatest interest. We show the ‘B’ and ‘E’ solutions from those tables, with coverage
breakdowns for each species, in Fig. 4, as they provide the best 2 and 3 antigen solution given the specific criteria i-iii discussed
above. The B solution started with a 5 species Ebolavirus Epigraph solution; this was fixed (we call it sequence “a”) to enforce
good coverage of this historically important genus, the cause of many highly lethal outbreaks. Then a second Epigraph sequence
was designed that offered maximum complementary coverage of the full 34 sequence outbreak set relative to sequence “a”, for
use as a bivalent vaccine. The E solution again started with “a”, and two Epigraphs were simultaneously solved that again
offered maximum complementary coverage of the full 34 sequence outbreak set relative to “a”, this time intended for use as a
trivalent vaccine.

We conclude that Epigraph vaccines based on conserved regions in the Ebola proteome suggest a pan-Filoviridae vaccine
may be feasible, with the potential to maintain reactivity to the recurrent outbreak strains, while extending cross-reactivity
across the known diversity of filoviruses (Fig. 4), and perhaps beyond, to viruses related to the Filoviradae family that have not
yet been encountered. In particular, a trivalent conserved-region Epigraph vaccine achieves (>90%) PTE coverage of viruses
across the Marburgvirus and Ebolavirus genera, with significant cross-reactive potential against the very distinctive Cuevavirus
(Fig. 4). In contrast, single natural EBOV Glycoprotein or Nucleoprotein vaccines30, 40 have poor cross-reactive potential with
viruses of other species; the multi-modality in the plots in Fig. 4 is due to the fact that within species, even between outbreaks
viruses are highly related, but between species and genera sequence distances are much greater. Even combinations of natural
antigens have limited potential for cross-reactivity (Fig. 4).

DISCUSSION
Building on the principles used for Mosaic vaccines – namely, the collective design of multiple antigens to maximize PTE
coverage – Epigraphs employ a graph-based dynamic programming strategy that is computationally much more efficient and,
under restricted conditions, mathematically optimal (as we show in the Methods section). This high performance at low cost
expands the design space for novel vaccine approaches. Our Epigraph vaccine design tool suite20 includes the ability to define
and exclude rare epitopes, to use aligned or unaligned input sequences, and to use inexact matches as an optimization criterion.

By maximizing PTE coverage, polyvalent Epigraphs are markedly more efficient than natural sequences in making use
of the sequence space available in antigen inserts. The most common forms of epitopes are favored, while rare type-specific
epitopes, which are found in virtually every natural HIV strain, are disfavored, and can be explicitly excluded. If a variant of an
epitope is already present in one antigen, other antigens in the set will tend to pick up other common variants. Such epitope
complementarity in Mosaic antigen sets has been shown experimentally to extend both the breadth and the depth of the vaccine
response in animal models10, 13, 15. Also, Epigraphs provide a logical framework for reagent as well as vaccine design: for
example, Epigraph sequences could be used as a foundation to design an optimal set of peptides to explore immune responses in
a population infected by a variable pathogen, and would have an advantage over a consensus sequence as amino acid positions
in an alignment are not considered in isolation, rather the frequency of local combinations of amino acids are considered.

We incorporated Epigraph code into our TTV design algorithm, to use PTE similarity as a foundation for defining clusters
of viruses, an immunological perspective, rather than less relevant Hamming or phylogenetic distances. TTVs are therapeutic
vaccines that could best cover the population diversity for the purpose of tailoring a vaccine to individual patient’s infecting
virus within the context of manufacturing a limited and feasible number of antigens. We also explored the idea that in designing
TTVs (and more generally, in choosing how many antigens to deliver in any polyvalent vaccine), the benefits of increased PTE
coverage should be balanced with the cost of including mismatched (i.e., extra) epitopes in a vaccine. The impact of mismatched
epitopes on T-cell responses is not understood, but can now be experimentally evaluated in the context of antigen presentation
in RhCMV vectors in NHPs, where the effect of varying these parameters on protective efficacy be tested experimentally.
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Previous experiments in NHPs using Mosaic HIV vaccines show that use of polyvalent proteins, computationally designed to
maximize PTE coverage, results in vaccine-elicited T-cell responses that have increased cross-reactivity and potency8, 10, 11, 14, 15.
Further, blending conserved region approaches and PTE coverage design may be advantageous6, 16, 25. By analogy, coupling
Epigraphs with a conserved region strategy enables vaccine designs with the potential to extend cross-reactivity across
Filoviridae, which may be important in an uncertain future when the next outbreak virus is not predictable. For the pan-filovirus
conserved region design, we used Epigraph to create a local epitope coverage map that provided an immunologically relevant,
epitope-centric identification of the most conserved regions in the diverse viral family. The exploration of many possible
design options enabled us to identify a vaccine design that has the potential to provide cross-reactive coverage across all of
the Filoviridae family without compromising the coverage of ebolaviruses and marburgviruses. Of course the vaccine antigen
designs we present here are based on predictions of cross-reactive potential, and have yet to be experimentally validated. But
given earlier success with Mosaic vaccines in NHPs, and the extent of PTE coverage we observe, these Epigraph designs have
promise, and experimental evaluation of these designs is underway. Our new Epigraph algorithm allowed us to solve design
problems that were intractable using our first generation Mosaic strategy. We believe the Epigraph code has the potential to aid
in discovery of optimal design strategies for other highly variable viruses.

METHODS

Epigraph algorithm
A sample set S= {s1,s2, . . . ,sN} of N protein sequences is taken to characterize the variability of a virus over a population that
will be targeted for vaccine use. Each PTE is assigned a frequency corresponding to the fraction of sequences in S in which the
PTE appears. For example, if e = VTSSNMNNA, and if n is the number of sequences in the sample set S in which the 9-mer
VTSSNMNNA appears, then its frequency is given by f (e) = n/N.

We will write E (s) as the set of PTEs that appear in the sequence s. For example, if s = VTSSNMNNADSVWLR..., then
E (s) = {VTSSNMNNA, TSSNMNNAD, SSNMNNADS, SNMNNADSV, NMNNADSVW, MNNADSVWL, NNADSVWLR, . . .}. For a
set S of several sequences, E (S) is the union of the sets E (s) over all s ∈ S; in other words, e ∈ E (S) if and only if e ∈ E (s) for
some s ∈ S. Even if an epitope e appears in multiple sequences, it still appears only once in E (S).

An artificial antigen q is a sequence that resembles a natural protein but contains PTEs that correspond to the most frequently
appearing PTEs in the population sample S. Writing E (q) as the set of PTEs that appear in q, we say that an antigen q exhibits
good coverage if the f (e)’s are large for the e’s in E (q). More formally, we define

Coverage(q) = ∑
e∈E (q)

f (e)
/

∑
e∈E (S)

f (e). (1)

The numerator is the sum of the frequencies of PTEs that appear in q, and the denominator is the sum over all PTEs. This
coverage corresponds to the total cross-reactive potential of all the epitopes in the vaccine antigens. We don’t have a detailed
model for how reactive each epitope is, or even for which k-mers are true epitopes; in the face of this uncertainty, we treat all
k-mers equally. For a highly immunogenic protein like HIV-1 Gag, T-cell epitopes have been identified in the literature (and
summarized in the Los Alamos HIV database41) that tile across the entire Gag protein, providing a rationale for this assumption.

A polyvalent vaccine consists of several artificial antigens: Q= {q1, . . . ,qm}. And Coverage(Q) is given by Eq. (1) with
the sum over e ∈ E (Q).

The main idea in Epigraph is that we can express this formulation as a directed graph (Fig. 1). Each node in the graph
corresponds to a distinct k-mer, and a directed edge connects two k-mers (ea,eb) if they overlap by k−1 characters, as illustrated
in the Fig. 1(b) inset. We remark that this k-mer overlap graph, which is closely related to a de Bruijn graph42, is widely used in
genome assembly43, 44.

A path through the graph is a connected sequence of nodes e1,e2, . . . ,eL: there is a directed edge from e1 to e2, from e2 to
e3, and so on until the last edge connects eL−1 to eL. Such a path corresponds to a sequence of L+ k−1 characters, which
defines the artificial antigen q. The coverage associated with that antigen is directly proportional to the sum of the frequencies
associated to the nodes in the path: f (e1)+ f (e2)+ · · ·+ f (eL).

For computational convenience, we add Begin and End nodes to the graph, connected respectively to the first and last k
characters in each sequence. Epigraph (see Algorithm 1) finds a path P from Begin to End that optimizes the total frequency
∑e∈P f (e) of epitopes in that path. The algorithm for finding the optimal path is straightforwardly equivalent to well-known
algorithms in graph theory45, and uses dynamic programming, a strategy often used in bioinformatic applications46, 47. It
consists of a forward loop, followed by a backward loop. The forward loop computes F(e) for all the nodes, where F(e) is the
maximum total frequency over all paths that end in e. The backward loop builds the path that achieves the maximal score.

Let P(e) be the set of predecessors of node e: that is, the set of nodes e′ for which there exists a directed edge that connects
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from e′ to e. Then we have

F(e) = f (e)+ max
e′∈P(e)

F(e′) (2)

If the set of predecessors P(e) is empty, then we define F(e) = f (e). In particular, F(Begin) = f (Begin) = 0. If all of the
sequences in S contain only amino acid characters, then the Begin node will be the only node with no predecessors. If there is
a non-amino-acid character (e.g., an ‘X’ indicating an ambiguous base call in the DNA sequence, or a ‘#’ indicating a frame
shift) in any of the sequences, then the PTE immediately after that character might also lack a predecessor. For a directed
acyclic graph, there exists a “topological ordering” of the epitopes45, e1,e2, . . ., with the property that if (ei,e j) is a directed
edge, then i < j. By proceeding in this topological order, we can straightforwardly evaluate Eq. (2) for all the nodes.

Having evaluated F(e) for all the nodes e, we will start at the node e∗0 = END, and iterate backwards:

e∗p+1 = argmaxe∈P(e∗p)F(e) (3)

If the set P(e∗p) is empty, then e∗p has no predecessors, and we are finished: usually, e∗p = Begin. The sequence of epitopes
e∗p,e∗p−1, . . . ,e

∗
0 corresponds to a reconstructed sequence q of p+ k−2 characters that optimizes the epitope coverage by an

intact artificial protein that resembles a natural protein. If the argmax operator does not have a unique value, there are multiple
solutions, all equivalent and optimal in the sense of coverage.

If this directed graph has no cycles, then Epigraph finds a path that maximizes Eq. (1), providing a rigorously optimal
solution. This optimization is done with computational effort that scales only linearly with the size (as measured in nodes and
edges) of the graph. In practice the directed graph created from S may not be acyclic, though it is often very nearly so, especially
for larger values of k. For this case, we developed a heuristic scheme to “de-cycle” the graph, by iteratively identifying cycles
and then removing low-value edges until no cycles remain (see Algorithm 2 and Methods: De-cycling).

As an aside, we further remark that the logic that defines F(e) in Eq. (2) can be employed to define x(e) for all epitopes in
the graph:

x(e) = 1+ max
e′∈P(e)

x(e′) (4)

If (ea,eb) is a directed edge in the graph, then Eq. (4) guarantees that x(ea)< x(eb). In particular, if we use x(e) as a horizontal
position associated with node e (which we do in Fig. 1), then we will have the property that all directed edges point from left to
right. As with Eq. (2), the definition in Eq. (4) requires that the graph be acyclic.

If a user wishes to exclude rare epitopes, they an do this by selecting a cutoff frequency for exclusion for an Epigraph run.
The Epigraph tool suite enables a user to explore of the cost in terms of overall coverage as the cutoff frequency increases (Fig.
2), to make an informed decision regarding the selection of the cutoff value. Epigraph will then eliminating nodes in the graph
for which f (e)≤ fo = no/N, where fo is a cutoff frequency (and no is a cutoff count), and N is the number of sequences in the
population.

De-cycling
The population of sequences gives rise to a directed graph, but this graph may contain cycles, and the Epigraph algorithm
requires that the graph be acyclic. One way cycles can arise is when an identical k-mer is found directly repeated in the same
sequence; this is not common, but it does happen. In the Los Alamos HIV database 2014 alignment, out of N = 4250 HIV Env
sequences, 91 of them (2.1%) have at least one 9-mer directly repeated in a sequence. Similarly 0.3% of Nef, 0.8% of Pol, and
1.3% of Gag sequences, carry such repeats. A more common way for cycles to arise, however, comes from effective repeats of
an epitope across multiple sequences.

On the other hand, we have found that, particularly for larger values of k (and larger values of fo), the graph is often very
nearly acyclic, and can be made acyclic with only a few perturbations to the graph. The optimal solution to this perturbed graph
is then taken as a nearly-optimal solution to the original graph. The problem of removing the least number of edges to produce
an acyclic graph is equivalent to the NP-hard “minimum feedback arc set” problem48, 49. Thus we use a heuristic approach for
making these perturbations; we keep the same nodes from the original graph, but successively cut edges until an acyclic graph
remains.

To eliminate cycles, we first have to find cycles, and to help with this task, we decompose the graph into “strongly connected
components” (for an acyclic graph, every node is its own strongly connected component) – a task that can be performed in
linear time50. Within a single strongly connected component, there exists a path from every node to every other node, and
this makes cycles easy to find: if ea and eb are two nodes in the same component, then the directed path from ea to eb can be
merged with the directed path from eb to ea to form a cycle that includes both ea and eb.
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Each time a cycle is located in the graph, we choose one of the edges in the cycle to remove from the graph. This choice is
heuristic, but since cutting edges has the effect of isolating nodes, we seek cuts that isolate low-value nodes. For each edge
(ea,eb) we define a value, based on f (ea) and f (eb); then we choose the edge with the smallest value and remove it from the
graph. A very simple and (empirically) effective heuristic is to take the value to be the sum f (ea)+ f (eb). In our experiments,
we employed a slight modification of this heuristic. If ea is the sole predecessor of eb, then cutting edge (ea,eb) will isolate
node eb, so we add a further cost of f (eb). Similarly, if eb is the sole successor to ea, then we add f (ea). See Algorithm 2 for
details.

Polyvalent vaccines
In the polyvalent, or “cocktail”, version of the problem, we seek m > 1 artificial sequences Q= {q1, . . . ,qm} that collectively
maximize the coverage of PTEs in the sample target population S. Typically m is small, only 2 or 3, due to both implementation
costs and the biological “cost” of including more rare epitopes as m increases, which may divert the immune response from
more useful conserved epitopes. We write E (Q) = E (q1)∪·· ·∪E (qm) as the set of epitopes that appear in at least one of the
sequences in Q, and seek to optimize the sum ∑e∈E (Q) f (e) of the frequencies for all the epitopes that appear in Q.

To find a cocktail of m > 1 antigens, the Epigraph algorithm is applied in a sequential manner, as shown in Algorithm 3. To
see how this works, suppose we have a solution to the m′-sequence problem; to extend this to the (m′+1)-sequence problem,
we try to optimize the complementary coverage, and pick up to the extent possible high-frequency PTEs that were not sampled
in the first m′ sequences. This is done by setting the f value of the already-covered PTEs to zero. The graph structure is
the same, but the update of the cumulative scores is based on these new f values. Although revisiting epitopes from the
{q1, . . . ,qm′} sequences is allowed if essential to complete the path, it is discouraged because there is no gain in the coverage
score. Specifically, define the modified frequency

f ∗(e) =
{

0 if e ∈ E (q1)∪·· ·∪E (qm′)
f (e) otherwise (5)

and, as in Eq. (2), let F∗(e) = f ∗(e)+maxe′∈P(e) F∗(e′).
Thus, for instance, we can find an m′ = 1 solution using Epigraph on the original frequencies f (e); then extend to

m′ = 2,3, . . . ,m by optimizing complementary coverage at each stage, using the modified f ∗(e). The m = 1+1 column in
Supplementary Table 2 corresponds to this sequential approach.

Once an initial polyvalent solution has been determined, iterative refinement of sequential solutions can improve the final
coverage. Given initial sequences q1,q2, . . . ,qm, we can go back and recompute a new solution for q1. This is done by starting
with the original frequency values for each of the epitopes, but setting to zero those epitopes that are covered by q2, . . . ,qm.
The optimization of this complementary coverage problem leads to a new q1. One can loop through all of the initial solutions
this way, each time optimizing the appropriate complementary coverage.

The iterative refinement scheme can also be applied to other initial conditions; e.g., one can use a consensus, natural or
Mosaic solution as an initial sequence. Supplementary Table 4 shows how a Mosaic solution can be improved by using the
Mosaic solution as a starting place for an iterative Epigraph refinement. If Mosaic antigens are allowed to evolve for many
generations, they may eventually evolve to a solution that is better in terms of PTE coverage than a first-pass Epigraph solution.
But even these solutions might be improved with iterative Epigraph refinement.

Multiple trials can also be used to improve coverage. Here, instead of using Epigraph to obtain an m′ = 1 solution, use
a random sequence for q1. With this as a starting point, sequentially add new sequences q2, . . . ,qm, followed by iterative
refinement until convergence is achieved. We can do this for many random initial sequences, and keep the solution that gives
the best coverage. Iterative refinements with multiple trials were used for the m = 2 column in Supplementary Table 2.
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ALGORITHMS AND FIGURES

Algorithm 1 Epigraph: FIND OPTIMAL PATH THROUGH A GRAPH OF EPITOPES

Require: Directed Acyclic Graph G, including
two nodes labeled Begin and End, and at least one path connecting them
a function P(e) that specifies the predecessors to node e
a function f (e) that specifies frequency of epitope e in the population
a topological ordering of nodes: e0,e1, . . . ,eN+1; with e0 = Begin and eN+1 = End

. Topological ordering implies: if (e j,ei) is a directed edge, then j < i
. Equivalently: if e j ∈ P(ei), then j < i

1: F(e0)← 0 . Initialize
2: for i = 1 . . .N do . Forward loop
3: F(ei)← f (ei)+maxe′∈P(ei) F(e′) . F(e) is sum of f (e′)

. for e′ in best path that ends at node e
4: e∗0← End . Start at End and work backwards
5: for p = 0,1,2, . . . do . Backward loop
6: e∗p+1← argmaxe∈P(e∗p)F(e) . e∗p+1 is best predecessor of node e∗p
7: if e∗p+1 = Begin then
8: return [e∗p,e∗p−1, . . . ,e

∗
1] . Return optimal path
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Algorithm 2 Decycle: REMOVE ALL CYCLES FROM A GRAPH

Require: A directed graph G, including:
a function S(e) that specifies the successors to node e, and
a function P(e) that specifies the predecessors to node e
a function f (e) that specifies frequency of epitope e in the population

Require: Functions STRONGLY CONNECTED COMPONENTS and SHORTEST PATH,
both are provided by NetworkX software package51

1: repeat
2: J← STRONGLY CONNECTED COMPONENTS(G)

. J is a list of all components; each component is a list of nodes in G
3: J← J−{ j ∈ J,such that | j|= 1}

. Discard all single-node components – no cycles there!
4: for all j ∈ J do . For each component
5: repeat
6: Choose (a,b) ∈ j . Randomly choose two nodes from the selected component
7: C← CYCLEFROMTWONODES(G,a,b)
8: if C 6= /0 then
9: (ea,eb)←WEAKEDGEINCYCLE(G,C)

10: Remove edge (ea,eb) from G

11: until C = /0
12: until J = /0 . G is acyclic; we are done.

13: procedure CYCLEFROMTWONODES(G,a,b)
14: Pab← SHORTEST PATH(G,a,b)
15: Pba← SHORTEST PATH(G,b,a)
16: if either call to SHORTEST PATH fails then
17: C← /0
18: else
19: C← Pab +Pba . Merge two paths into a cycle
20: return C

21: procedure WEAKEDGEINCYCLE(G,C)
22: Write C as a list of nodes [e1, . . . ,ek] and edges [(e1,e2),(e2,e3), . . . ,(ek,e1)]
23: for all (ei,e j) in [(e1,e2),(e2,e3), . . . ,(ek,e1)] do
24: vi j← f (ei)+ f (e j) . v is heuristic “value” of edge
25: vi j← vi j + f (ei) if |S(ei)|= 1 . Add value if cutting edge would isolate ei
26: vi j← vi j + f (e j) if |P(e j)|= 1 . Add value if cutting edge would isolate e j

27: Let io, jo← argmin vi j
28: return (eio ,e jo) . return lowest-value edge in cycle
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Algorithm 3 Cocktail: FIND (AND ITERATIVELY REFINE) A SET OF m ANTIGENS

Require: Directed Acyclic Graph G, including
a function f (e) that specifies frequency of epitope e in the population

Require: Function EPIGRAPH(G, f ) that returns a sequence q, corresponding to a path through the graph G that maximizes
∑e∈E (q) f (e) . See Algorithm 1

1: Q← /0
2: f ∗(e)← f (e) for all epitopes e ∈ G . Initialize
3: for n = 1 . . .m do . Sequential solution
4: qn← EPIGRAPH(G, f ∗) . Compute next antigen sequence qn
5: Q← Q∪{qn} . Add qn to vaccine
6: for e ∈ E (qn) do . Now that e is in the vaccine
7: f ∗(e)← 0 . No credit for including e in subsequent antigens

. At this point, f ∗(e) = 0 for all e ∈ E (Q)

8: repeat . Iterative Refinement (optional)
9: for n = 1 . . .m do

10: Q← Q−{qn} . Remove sequence qn from vaccine
11: for e ∈ E (Q)−E (qn) do . With e not in the vaccine anymore,
12: f ∗(e)← f (e) . f ∗(e) gives credit for including e in subsequent antigens
13: qn← EPIGRAPH(G, f ∗) . Compute replacement for old sequence qn
14: Q← Q∪{qn} . Add qn to vaccine
15: f ∗(e)← 0 for all e ∈ E (qn)

16: until no change in q1, . . . ,qm

17: return cocktail of m sequences: Q= {q1, . . . ,qm}

Algorithm 4 TTV: TAILORED THERAPEUTIC VACCINE

Require: Sequence set S= {s1, . . . ,sN},
Require: Directed Acyclic Graph, G
Require: Function EPIGRAPH(G, f ) that returns a sequence q, corresponding to a path through the graph G that maximizes

∑e∈E (q) f (e) . See Algorithm 1

1: Define u(s,e) = 1 if epitope e appears in sequence s . i.e., if e ∈ E (s)
2: f (e)← (1/N)∑s∈S u(s,e) . Frequency of epitope e in sequence set S
3: qo← EPIGRAPH(G, f ) . qo is centroid of the full data set S

4: Randomly select m−1 sequences from S; call them q1, . . . ,qm−1.
5: repeat
6: Initialize: S1 = · · ·= Sm−1 = /0
7: for i = 1 . . .N do . Loop over sequences
8: for n = 1 . . .m−1 do . Loop over centroids
9: cin← ∑e∈E (si) u({qo,qn},e) . Coverage of sequence si by antigens {qo,qn}

. Here, u({qo,qn},e) = max[u(qo, ,e),u(qn,e)]
10: n← argmaxn′cin′

11: Sn← Sn∪{si} . Put si into cluster Sn

12: for n = 1 . . .m−1 do . Loop over clusters
13: f (n)(e)(1/N)← ∑s∈Sn u(s,e) . Frequency of e in sequence cluster Sn

14: f (n)(e)← 0 for all e ∈ E (qo) . No credit for epitopes already covered by qo
15: qn← EPIGRAPH(G, f (n)) . New centroid for Sn

16: until convergence
17: return tailored therapeutic vaccine: qo,q1, . . . ,qm−1
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Figure 1. (a) Full graph for the CRF01-AE clade of the Nef protein. The green rectangle is an inset shown in (B). Nodes are
red dots, and represent each k-mer variant, with k = 9. The edges are thin blue lines that connect epitopes whose sequences
overlap by k−1 amino acids, as shown for the first two epitopes (ea = VTSSNMNNA, eb = TSSNMNNAD) in the upper left of
(B). Although the topological properties of the graph do not depend on the node positions, this plot uses the vertical axis to
indicate epitope frequency in the target sequence set, y = f (e), for each node. The horizontal position of the nodes is chosen so
that all directed edges connect from left to right. The ideal path through this graph keeps as much as possible to the largest
y-values; this path defines a protein sequence that maximizes epitope coverage of the population. (b) The inset shows two paths
through the nodes. The solid black line is the optimal path, and corresponds to the sequence VTSSNMNNAD S VWLRAQEEEE

while the dashed green corresponds to VTSSNMNNAD C VWLRAQEEEE. The dashed line achieves higher f (e) values on 4
nodes, but the solid line has higher f (e) for 5 nodes, and ∑ f (e) is higher. Note there is no path that includes the highest-valued
nodes for all horizontal positions.
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Figure 2. Excluding rare epitopes. We see that excluding rare variants decreases the coverage, but only slightly. Coverage
of polyvalent (m = 2) solutions is shown as a function of minimum count no. These graphs are created by sequentially
increasing no and eliminating all nodes e from the graph for which f (e)≤ fo = no/N, where N is the number of sequences in
the sample population set. This continues until the maximum no is achieved for which a path still exists from Begin to End.
Note that this maximum value can be computed directly from the graph, before this sequential process is employed. Blue
dashed lines correspond to coverage given by the direct sequential algorithm; the black solid lines are based on the best
solutions after 100 random restarts. To facilitate comparison, the vertical axis, in all three plots, is restricted to a range of 0.015.
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Figure 3. Two-antigen vaccine coverage. Comparisons illustrating the average epitope coverage per sequence of 189 B
clade sequences isolated in the United States within the last decade, considered as a hypothetical target population for a tailored
therapeutic vaccine (TTV). To illustrate PTE coverage using a pair of natural within-B clade sequences as vaccine antigens,
5000 randomly selected pairs of natural B clade sequences (gray) were evaluated as potential vaccines, and the distribution of
average coverage of the sequences by natural pairs of antigens is shown in the gray histogram. This is compared to the average
coverage provided by a two-antigen set of M group Epigraphs (M database, blue), a two-antigen set of global B clade
Epigraphs (B database, green), and a US B clade TTV where the n = 2 best matches from a set of m = 6 representative
Epigraphs for manufacture were chosen as a “tailored” match for each of the 189 natural B clade US sequences. The TTV
antigens provide the best matches. Of note, the global M group two-antigen Epigraph solutions perform better than two natural
B clade Gag proteins even in a within-clade setting, and the M group Epigraphs have the potential for a global response at or
near this level of PTE coverage across all clades. (A) The comparisons for the full Gag protein, (B) The comparisons for only
the conserved p24 region.
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Figure 4. Ebola Epigraphs. (A) PTE Epigraph coverage of Ebola relative to a full proteome alignment, including one
representative sequence per human outbreak. All 7 proteins in the Filovirus proteome (excluding soluble GPs) were
concatenated, 2 Epigraph sequences were generated spanning the full proteome, and these were used to identify the most
conserved regions in the proteome based on PTE coverage, highlighted in red. The black line shows 8/9 coverage, the gray line
the 9/9, of the population by the 2 Epigraphs, for each consecutive 9-mer in the alignment. The four highly conserved regions
together span 825 amino acids. (B) PTE coverage of Filovirus species by different vaccine options. The natural vaccine
candidates used were the reference strains EBOV Yambuku-Mayinga, NC 002549; SUDV Gulu, NC 006432; and MARV Mt.
Elgon-Musoke, NC 001608. (The four-letter uppercase species names the use standard nomenclature, described in the text.)
Columns represent the average PTE coverage for a given species, ordered left-to-right according to the legend, for different
vaccine options. Deeper colors show 9/9 PTE matches, lighter colors the added coverage by 8/9 matches. Ebolavirus genus
species are red, Marburgvirus blue, and Cuevavirus purple. There is a high level of PTE coverage within-species. Vaccines
being evaluated in West Africa use a natural EBOV GP antigen30, 40, and PTE coverage would be excellent for other EBOV
strains, but poor for other species (green box, top left). In contrast, a three-antigen conserved-region Epigraph has excellent
coverage across all known sequences sampled from Filoviridae (green box, bottom right).
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Aligned Sequences
For aligned sequences, the positions t = 1 . . .T are well-defined for each amino acid character, and the artificial sequence q that
we wish to construct will also be of length T . We write sn[t] as the t’th character in the n’th sequence. It will also be useful to
introduce the notation s[t : u] for the subsequence of s that begins at position t and ends at position u−1. We define a new
frequency function that depends on position: f (t,e) is the fraction of sequences in S for which e = s[t : t + k]. The “coverage”
of a sequence q is given by

1
T − k

T−k

∑
t=1

f (t,q[t : t + k]). (S-1)

For the aligned-sequence problem, the nodes of our graph will be associated with distinct (t,e) values.
In order to align sequences, one has to deal with insertions and deletions, and this introduces gaps into the aligned sequences.

For example, the sequences ACDEGHI and ADEFGHI are better aligned as ACDE-GHI and A-DEFGHI. The gap character is
treated differently from an amino acid character:

1. For a given sequence s, if s[t] is not a gap character, then we associate the epitope at position t as the first k non-gap
characters, beginning with the character s[t]. For example if k = 9 and s =GNF--RNQRK-IVKCFNCGK..., then the PTE
associated with t = 2 is NFRNQRKIV.

2. If s[t] is the gap character, then we make a “placeholder epitope” whose first character is the gap character, and whose
subsequent characters are the next k−1 non-gap characters. For these epitopes, we set f (e) = 0. In the example above, the
PTE associated with t = 4 is the placeholder epitope -RNQRKIVK.

The rules for connecting edges to consistent epitope pairs are also modified. The first rule is that edges are only supplied
for adjacent positions; a directed edge can only connect a node at position t with another at position t +1. As with ungapped
sequences, two adjacent epitopes are considered consistent if the last k−1 characters of the first epitope agree with the first k−1
characters of the second epitope. But we also consider the pair consistent if the second epitope begins with a gap character, and
the remaining k−1 characters match the last k−1 characters of the first epitope. For example: ACDEFGHIK and -CDEFGHIK
are consistent, -CDEFGHIK is consistent with itself; and -CDEFGHIK and CDEFGHIKL are consistent.

Inexact matches
To evaluate the inexact-match coverage, we introduce a set Hd(e) that includes all epitopes within Hamming distance d of the
epitope e. If E is a set of epitopes, then we write Hd(E ) as the set of all epitopes that are within distance d of some epitope in
E . That is, Hd(E ) =

⋃
e∈E Hd(e). Similar to Eq. (1), we can define the inexact-match coverage in terms of the frequencies f (e)

of all the epitopes that approximately match the epitopes in the vaccine:

Coveraged(q) = ∑
e∈Hd(E (q))

f (e)
/

∑
e∈E (S)

f (e) (S-2)

Note that if the Hd(e) were disjoint for all e ∈ E , then we would be able to write

∑
e∈Hd(E )

f (e) = ∑
e∈E

∑
e′∈Hd(e)

f (e′) = ∑
e∈E

f̃ (e) (S-3)

where

f̃ (e) = ∑
e′∈Hd(e)

f (e′), (S-4)
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which suggests that optimization based on f̃ (e), in place of f (e), would optimize off-by-d coverage. Unfortunately, however,
the Hd(e) are not in general disjoint, so f̃ (e) in general overestimates the “value” of e (i.e., the contribution of e to the coverage).
This is what prevents us from using this scheme to optimize the inexact-match coverage for unaligned sequences.

The same problem holds, in principle, for aligned sequences, but the overlap of the Hamming sets is much smaller, and we
find that we can use this scheme for aligned sequences. We follow the idea in Eq. (S-4), and define f̃ (t,e) = ∑e′∈Hd(e) f (t,e′).
In our experiments, we actually used a slight variant of this expression

f̃ (t,e) = λ f (t,e)+ ∑
e′∈Hd(e)

f (t,e′) (S-5)

where λ = 0.1. This mostly optimizes the number of inexact matches, but the λ f (t,e) term provides a small bonus for exact
matches.

The notion extends straightforwardly for polyvalent vaccines, though the bookkeeping is a little trickier. If Eo is the set of
epitopes exactly matched by the first m′ antigens in a vaccine, then Hd(Eo) is the set of epitopes that are covered in an off-by-d
sense. To account for the fact that these epitopes are already covered, they need to be excluded from the sum that defines f̃ (t,e).
In particular, write H′(e) as the set of epitopes that are in Hd(e) but not in Hd(Eo). Then

f̃ (t,e) =

 0 if e ∈ Eo
λ f (t,e)+ ∑

e′∈H′(e)
f (t,e′) otherwise, (S-6)

and the next antigen (m′+1) is obtained by finding the path through the graph that optimizes ∑t f̃ (t,et).

Filovirus alignment
We created a master input sequence alignment, using the Los Alamos Filovirus database33. This alignment includes 34
sequences – a single representative sequence for every human outbreak that has at least one full length genomic sequence
available, as well as a representative of RESTV and LLOV, which have not been isolated from humans – to capture the extent of
known Filoviridae diversity, while weighting the sampling towards recurrent outbreak strains. Hence the alignment includes 10
EBOV sequences, 7 SUDV, 2 BDBV, 1 TAFV, 1 RESTV, 1 LLOV, 3 RAVV, and 9 MARV. Within human outbreaks, sequences
are highly similar, and so each outbreak is represented only once. To select a single representative that approximated the index
case of each outbreak, we chose a sequence from the earliest sample in outbreak, when temporal data was available. If multiple
isolates were sequenced from that sample, we picked a natural sequence that was either identical or closest to the consensus
from the first time point. We then translated each gene, including the full-length Glycoprotein GP, but not the secreted forms,
sGP and ssGP, and we concatenated the proteins into a full proteome alignment of all 7 Filovirus proteins. This served as a
baseline for vaccine design. We then created two subsets of this data for staged vaccine design exploration. The first included
only 8 sequences, one representative each from EBOV, SUDV, BDBV, TAFV, RESTV, LLOV, RAVV, MARV, so we could
explore the vaccine design outcome if all species were weighted equally. The second one contained only a single representative
virus from each of the 5 species in the Ebolavirus genus.

Table 1. Variation in coverage with length of epitope. Five separate Epigraph m = 2 solutions (with no iterative
refinement or multiple starts) are computed for the B-clade Gag protein sequences. Each solution optimizes a different length
epitope, with ko varying from 8 to 12. The coverage for each solution is evaluated five different ways, based on epitope lengths
varying from 8 to 12. Numbers within a column are meant to be compared, since they are all evaluated by the same criterion.
We see in each case that the optimal coverage, as evaluated for k-mer epitopes, is achieved by the solution for which ko = k.
But we also see that the differences are not substantial.

Optimized with Evaluated with epitope length k
epitope length ko k = 8 k = 9 k = 10 k = 11 k = 12

ko = 8 0.760252 0.725588 0.687727 0.650896 0.617354
ko = 9 0.756754 0.726877 0.692048 0.657789 0.626116
ko = 10 0.750047 0.723911 0.697076 0.668338 0.641497
ko = 11 0.749303 0.723031 0.696266 0.670036 0.644357
ko = 12 0.747089 0.721145 0.694929 0.669224 0.644787
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Table 2. Compare 9-mer coverage for Mosaic and Epigraph. Epigraph results are based on five runs with different
random number seeds; the best and the median coverage fractions are reported. (Epigraph is much faster to run than Mosaic, so
it is feasible to run it five times and keep the best solution.) The main thing to notice is that the coverage fractions are so similar,
with the difference typically in the fourth decimal place. Mosaics were generated using 10 hour run times on a 48 Core AMD
Opteron cluster via the HIV database portal, and used population sizes of 400
(http://www.hiv.lanl.gov/content/sequence/MOSAIC/). Epigraph usually has the slight advantage; in only
7 of the 48 cases did the Mosaic solution have the best coverage. Even the median Epigraph solution outperformed Mosaic
most of the time. Here, m = 1+1 corresponds to the sequential cocktail solution (optimize for m = 1, fix that solution, and find
the optimal complementary sequence), and m = 2 refers to iterative refinement and multiple random starts.

m = 1 m = 1+1 m = 2
Protein Mosaic Epigraph Mosaic Epigraph Mosaic Epigraph
and Clade (best/median) (best/median) (best/median)
Gag E 0.687065 0.687068 0.769795 0.770351 0.770029 0.770971

0.687068 0.770351 0.770971
Gag B 0.613677 0.613664 0.677744 0.727352 0.726545 0.727352

0.613491 0.727084 0.727091
Gag C 0.603501 0.605896 0.712061 0.711849 0.711460 0.711904

0.603367 0.711297 0.711813
Gag M 0.464367 0.464368 0.621413 0.621209 0.620995 0.621718

0.464157 0.620641 0.621405
Nef E 0.456775 0.456775 0.597314 0.596507 0.595638 0.596507

0.456775 0.596507 0.596507
Nef B 0.363338 0.363365 0.480749 0.480515 0.482010 0.482288

0.363338 0.480489 0.482001
Nef C 0.391395 0.390911 0.527219 0.527535 0.527125 0.527750

0.390911 0.527535 0.527750
Nef M 0.285417 0.285613 0.396963 0.397462 0.398129 0.398710

0.285584 0.396834 0.398410
Pol E 0.791086 0.791086 0.866294 0.866522 0.865880 0.866639

0.791086 0.866522 0.866639
Pol B 0.703716 0.703722 0.798170 0.798906 0.798047 0.798945

0.703722 0.798906 0.798906
Pol C 0.732098 0.731738 0.817086 0.817760 0.817081 0.817802

0.731726 0.817636 0.817636
Pol M 0.612655 0.612701 0.734066 0.734081 0.735310 0.735433

0.612558 0.734062 0.735260
Env B 0.378914 0.379337 0.467372 0.468104 0.467647 0.468269

0.379334 0.468086 0.468251
Env C 0.397118 0.397204 0.489801 0.490135 0.489693 0.490498

0.397204 0.490135 0.490454
Env E 0.493367 0.493401 0.577307 0.577352 0.576875 0.577570

0.493401 0.577352 0.577467
Env M 0.282000 0.282412 0.379683 0.379903 0.381089 0.381442

0.282244 0.379740 0.380971
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Table 3. Aligned-sequences Epigraph performance. Performance of Epigraph applied to aligned sequences vs Mosaic for
9-mers. Because the algorithm is more nearly deterministic for the aligned case, the Epigraph results are based on a single run.
As in Supplementary Table 2, note that the Epigraph and Mosaic coverage fractions very similar. But while the unaligned
Epigraph usually outperformed the Mosaic solutions, the aligned Epigraph is outperformed by Mosaic just over half of the time
(27 out of 48). Asterisks indicate the higher score of Mosaic vs Epigraph.

Protein m = 1 m = 1+1 m = 2
and Clade Mosaic Epigraph Mosaic Epigraph Mosaic Epigraph
Gag E 0.687065 0.687068* 0.769795 0.769894* 0.770029 0.770523*
Gag B 0.613677* 0.613473 0.677744 0.726896* 0.726545 0.726903*
Gag C 0.603501* 0.602685 0.712061* 0.711228 0.711460* 0.711259
Gag M 0.464367 0.465539* 0.621413* 0.619661 0.620995* 0.620100
Nef E 0.456775* 0.450319 0.597314* 0.586679 0.595638* 0.586741
Nef B 0.363338* 0.362313 0.480749* 0.477803 0.482010* 0.479306
Nef C 0.391395* 0.384473 0.527219* 0.517049 0.527125* 0.517263
Nef M 0.285417* 0.279744 0.396963* 0.387946 0.398129* 0.388959
Pol E 0.791086 0.791109* 0.866294 0.866443* 0.865880 0.866493*
Pol B 0.703716 0.703968* 0.798170 0.798931* 0.798047 0.798931*
Pol C 0.732098* 0.731857 0.817086 0.817685* 0.817081 0.817685*
Pol M 0.612655* 0.612590 0.734066 0.734103* 0.735310 0.735691*
Env B 0.378914 0.379268* 0.467372 0.467930* 0.467647 0.467930*
Env C 0.397118 0.397142* 0.489801* 0.489724 0.489693 0.489988*
Env E 0.493367* 0.493353 0.577307* 0.576248 0.576875* 0.576248
Env M 0.282000* 0.281127 0.379683* 0.377815 0.381089* 0.379208

Table 4. Improving Mosaic solutions. Epigraph can be used to “tweak” the Mosaic solution provided by the genetic
algorithm; this provides a small, but always positive, improvement.

m = 2
Protein Epigraph
and Clade Mosaic Tweak Improvement
Gag E 0.770029 0.770501 0.000472
Gag B 0.726545 0.726733 0.000188
Gag C 0.711460 0.711603 0.000143
Gag M 0.620995 0.621332 0.000337
Nef E 0.595638 0.595845 0.000207
Nef B 0.482010 0.482053 0.000043
Nef C 0.527125 0.527776 0.000651
Nef M 0.398129 0.398636 0.000507
Pol E 0.865880 0.866402 0.000522
Pol B 0.798047 0.798393 0.000346
Pol C 0.817081 0.817775 0.000694
Pol M 0.735310 0.735427 0.000117
Env B 0.467647 0.467842 0.000195
Env C 0.489693 0.490032 0.000339
Env E 0.576875 0.577013 0.000138
Env M 0.381089 0.381510 0.000421
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Table 5. Summary statistics for Tailored Therapeutic Vaccines. Shown are PTE Coverage (fraction of 9-mers in a natural
strain that were perfectly matched by a 9-mers in the vaccine), and cost in terms of Extras (9 mers in the vaccine that are not
found in the natural strains). In (a), these values calculated for each of 189 sequences included in the post-2005 US B clade
alignment; in (b) for a set of 199 post-2005 C clade sequence from southern Africa; and in (c) a larger set of 4596 sequences
was used, spanning the full M group. In these vaccine designs, n is the number of antigens delivered and m is the number of
antigens manufactured (and from which the best n of m were chosen for each sequence, individually). For the straight Epigraph
vaccines, n = m. For the Tailored vaccines, we propose manufacturing m = 6 antigens, and delivering n = 2 or n = 3. Coverage
increases with increasing n or m, but the number of Extras depends mostly only on n. We also observed that using the
conserved p24 instead of the full Gag protein dramatically increases the coverage and the reduces the number of “Extras”, but
p24 spans only 231 amino acids long out of Gags full 500 amino acids (based on the HIV reference strain HXB2), reducing the
number of potential epitopes that could be targeted by over half.

(a) Evaluated against B-US clade
Gag p24

n m Vaccine Coverage Extras Coverage Extras
1 1 M Epigraph 0.55488 237.815 0.73131 59.979
1 1 B Epigraph 0.61174 195.720 0.76421 52.646
2 2 M Epigraph 0.67323 629.333 0.84204 214.296
2 2 B Epigraph 0.72471 553.899 0.87373 201.233
3 3 B Epigraph 0.75734 786.772 0.90810 297.571
2 6 B Tailored 0.75226 536.619 0.90859 187.889
3 6 B Tailored 0.78669 773.000 0.93556 280.704

(b) Evaluated against C-SA group
Gag p24

n m Vaccine Coverage Extras Coverage Extras
1 1 M Epigraph 0.39886 318.437 0.48548 114.739
1 1 C Epigraph 0.59591 200.809 0.73525 59.040
2 2 M Epigraph 0.57552 682.704 0.76864 230.593
2 2 C Epigraph 0.70760 558.608 0.84494 204.578
3 3 C Epigraph 0.73852 778.603 0.88154 338.417
2 6 C Tailored 0.73440 527.623 0.87996 191.538
3 6 C Tailored 0.76513 767.759 0.90373 290.985

(c) Evaluated against M-group
Gag p24

n m Vaccine Coverage Extras Coverage Extras
1 1 M Epigraph 0.46416 289.843 0.59210 93.267
2 2 M Epigraph 0.62121 664.677 0.78726 229.504
3 3 M Epigraph 0.67648 931.225 0.83539 299.959
2 6 M Tailored 0.68690 621.867 0.84368 214.370
3 6 M Tailored 0.71526 909.538 0.87381 313.950

Table 6. Conserved regions selected for vaccine design. Numbering is relative to proteins in the reference strain Zaire
1976 EBOV virus, NC 002549. See Fig. 4A in the main text for more detail.

Protein start stop length
Nucleoprotein 132 410 279
Matrix 71 193 123
Polymerase.1 540 854 314
Polymerase.3 952 1060 109

Total: 825 amino acids
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Table 7. Ebola coverage: A summary of coverage statistics for a subset of Ebola Epigraph sequence options we explored.
Solution A is the best single Epigraph using the 5 Ebola species set (Epigraph a). B is based on fixing “a”, and complementing
it with an Epigraph that will give the best coverage of the 34 outbreak sequence set (Epigraphs a+b). C is the 2 Epigraph
solution, simultaneously solved, for the 34 outbreak set (Epigraphs c1+c2). D fixes the two Epigraphs in B, and adds a third
complementary sequence to improve coverage of the 34 outbreak sequences (Epigraphs a+b+d). E fixes epigraph A, and then
simultaneously solves for 2 more complementary sequences that maximize coverage of the 34 outbreak sequences, for a total of
3 antigens (Epigraphs a+e1+e2). F is the simultaneously solved 3 Epigraph set that best covers the 34 outbreak sequences
(Epigraphs f1+f2+f3). E is the strategy that we preferred, because it improves coverage of diverse sequences in rare species
while maintaining excellent coverage of recurrent outbreak forms. Note that E will not perfectly match the optimal solution for
the 34 outbreak sequences, solution F, but we preferred solution E as it provided better coverage of rarer species of Ebolavirus,
with negligible loss of EBOV or SUDV coverage.

Optimization: exact exact λ = 0.1 λ = 0.1
Evaluation: 9/9 8/9 9/9 8/9

Protein vaccine m price gain
Nucleoprotein A 1 0.4953 0.6196 0.4858 0.6270 -0.0096 0.0074
Nucleoprotein B 2 0.5571 0.6365 0.5545 0.6419 -0.0026 0.0053
Nucleoprotein C 2 0.6919 0.7920 0.6815 0.7953 -0.0104 0.0033
Nucleoprotein D 3 0.6830 0.7410 0.6765 0.7498 -0.0065 0.0088
Nucleoprotein E 3 0.7490 0.8334 0.7369 0.8389 -0.0121 0.0054
Nucleoprotein F 3 0.8206 0.9047 0.8106 0.9077 -0.0100 0.0030
Region1 A 1 0.8052 0.9461 0.7897 0.9535 -0.0155 0.0074
Region1 B 2 0.8619 0.9491 0.8781 0.9651 0.0162 0.0160
Region1 C 2 0.8850 0.9651 0.8781 0.9651 -0.0068 0.0000
Region1 D 3 0.9361 0.9808 0.9362 0.9875 0.0001 0.0067
Region1 E 3 0.9361 0.9808 0.9362 0.9875 0.0001 0.0067
Region1 F 3 0.9503 0.9851 0.9350 0.9889 -0.0153 0.0038
Region2 A 1 0.7635 0.9496 0.7461 0.9530 -0.0174 0.0035
Region2 B 2 0.8061 0.9345 0.7954 0.9350 -0.0107 0.0005
Region2 C 2 0.8430 0.9678 0.8430 0.9678 0.0000 0.0000
Region2 D 3 0.9223 0.9775 0.8721 0.9957 -0.0501 0.0182
Region2 E 3 0.9223 0.9775 0.8721 0.9957 -0.0501 0.0182
Region2 F 3 0.9384 0.9693 0.8721 0.9957 -0.0662 0.0263
Region3 A 1 0.7674 0.9114 0.7550 0.9231 -0.0124 0.0117
Region3 B 2 0.8357 0.9434 0.8328 0.9517 -0.0029 0.0083
Region3 C 2 0.8693 0.9505 0.8547 0.9593 -0.0147 0.0088
Region3 D 3 0.9280 0.9831 0.9202 0.9838 -0.0078 0.0007
Region3 E 3 0.9280 0.9831 0.9202 0.9838 -0.0078 0.0007
Region3 F 3 0.9449 0.9854 0.9228 0.9875 -0.0221 0.0021
Region4 A 1 0.7980 0.9762 0.7505 0.9822 -0.0475 0.0059
Region4 B 2 0.8235 0.9732 0.7991 0.9703 -0.0245 -0.0029
Region4 C 2 0.8416 0.9505 0.8235 0.9732 -0.0181 0.0227
Region4 D 3 0.9275 0.9819 0.8905 0.9881 -0.0370 0.0061
Region4 E 3 0.9275 0.9819 0.8905 0.9881 -0.0370 0.0061
Region4 F 3 0.9464 0.9840 0.8905 0.9881 -0.0559 0.0041
Spike A 1 0.3883 0.5400 0.3659 0.5531 -0.0224 0.0132
Spike B 2 0.4214 0.4969 0.3993 0.5357 -0.0221 0.0388
Spike C 2 0.5644 0.6939 0.5506 0.7006 -0.0138 0.0068
Spike D 3 0.5877 0.6715 0.5792 0.6830 -0.0085 0.0115
Spike E 3 0.6504 0.7633 0.6281 0.7666 -0.0223 0.0033
Spike F 3 0.7285 0.8376 0.7214 0.8397 -0.0071 0.0022
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Table 8. Computation. Run times, in seconds, for the Epigraph algorithm on a modern laptop computer. The basic run
(m = 1) creates a graph from the sequence data, removes cycles, and then uses the dynamical programming scheme in Eq. (2)
and Eq. (3) to find the best path. Because the dynamical programming step is so fast, there is very little marginal cost in finding
a second path, using the sequential approach, without (m = 1+1) or with (m = 2) iterative refinement. The last column shows
the cost of computing new pairs of antigens using iterative refinement with T = 100 random initializations for the first path.
(Note the Env E data sample does not permit a solution with rare epitopes excluded.)

Protein Number of Number of m = 1 m = 1+1 m = 2 m = 2
and Clade Sequences Distinct PTEs (basic) (sequential) (iterative) T = 100

Exclude rare epitopes: no = 1
Gag E 673 8416 1.29 1.33 1.34 13.66
Gag B 1729 17273 3.04 3.15 3.20 25.75
Gag C 940 12823 2.18 2.17 2.21 20.93
Gag M 4596 45404 8.27 8.48 8.91 73.26
Nef E 246 2894 0.55 0.57 0.58 3.83
Nef B 1780 14522 1.81 1.86 1.92 17.37
Nef C 749 7523 1.01 1.04 1.09 8.85
Nef M 4040 30879 4.09 4.33 4.55 48.23
Pol E 348 7315 1.26 1.29 1.33 15.03
Pol B 1072 19732 3.26 3.37 3.40 38.20
Pol C 414 10882 1.75 1.84 1.86 19.77
Pol M 2780 42048 7.89 8.17 8.51 90.40
Env B 1433 58320 7.77 8.07 8.07 89.32
Env C 1124 45221 5.67 5.86 6.11 65.05
Env E 420 17825 – – – –

Env M 4250 152343 25.79 26.92 29.09 381.47
Include all epitopes: no = 0

Gag E 673 22107 3.98 3.62 3.69 43.11
Gag B 1729 48297 15.38 15.42 15.83 102.67
Gag C 940 35166 6.82 6.63 7.40 67.80
Gag M 4596 128940 52.01 56.44 50.23 366.43
Nef E 246 8248 1.53 1.59 1.61 13.09
Nef B 1780 44497 6.93 6.83 7.60 85.47
Nef C 749 21639 3.03 3.15 3.35 38.77
Nef M 4040 90850 16.95 16.03 17.01 223.88
Pol E 348 17749 2.48 2.70 2.90 38.44
Pol B 1072 45381 10.28 10.59 11.17 98.29
Pol C 414 26632 4.44 4.49 5.00 53.01
Pol M 2780 103471 38.19 38.18 40.33 395.15
Env B 1433 254412 123.29 137.06 210.90 997.47
Env C 1124 200964 64.72 82.08 72.15 618.25
Env E 420 71841 11.87 11.30 12.53 194.43

Env M 4250 666137 1063.41 1161.57 1260.84 4473.97
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Table 9. Compare unaligned and aligned epigraphs. This table contains no new information, but combines results from
Table 2 and Table 3 to display side-by-side the performance of unaligned and aligned epigraphs. In general the differences are
small, with the largest difference, for the m = 2 Nef C case, just over 0.01. For Gag, Nef, and Env, we see that the unaligned
performance is almost always better. For Pol, the aligned performance is often better though it bears remarking that for Pol, the
differences between the two are particularly small, always less than 0.0005. Asterisks indicate larger values.

Protein m = 1 m = 1+1 m = 2
and Clade Unaligned Aligned Unaligned Aligned Unaligned Aligned
Gag E 0.687068 0.687068 0.770351* 0.769894 0.770971* 0.770523
Gag B 0.613491* 0.613473 0.727084* 0.726896 0.727091* 0.726903
Gag C 0.603367* 0.602685 0.711297* 0.711228 0.711813* 0.711259
Gag M 0.464157 0.465539* 0.620641* 0.619661 0.621405* 0.620100
Nef E 0.456775* 0.450319 0.596507* 0.586679 0.596507* 0.586741
Nef B 0.363338* 0.362313 0.480489* 0.477803 0.482001* 0.479306
Nef C 0.390911* 0.384473 0.527535* 0.517049 0.527750* 0.517263
Nef M 0.285584* 0.279744 0.396834* 0.387946 0.398410* 0.388959
Pol E 0.791086 0.791109* 0.866522* 0.866443 0.866639* 0.866493
Pol B 0.703722 0.703968* 0.798906 0.798931* 0.798906 0.798931*
Pol C 0.731726 0.731857* 0.817636 0.817685* 0.817636 0.817685*
Pol M 0.612558 0.612590* 0.734062 0.734103* 0.735260 0.735691*
Env B 0.379334* 0.379268 0.468086* 0.467930 0.468251* 0.467930
Env C 0.397204* 0.397142 0.490135* 0.489724 0.490454* 0.489988
Env E 0.493401* 0.493353 0.577352* 0.576248 0.577467* 0.576248
Env M 0.282244* 0.281127 0.379740* 0.377815 0.380971* 0.379208
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